Lagrangian generators of the Poincaré gauge symmetries
نویسندگان
چکیده
منابع مشابه
0 Hamiltonian structure and gauge symmetries of Poincaré gauge theory ∗
This is a review of the constrained dynamical structure of Poincaré gauge theory which concentrates on the basic canonical and gauge properties of the theory, including the identification of constraints, gauge symmetries and conservation laws. As an interesting example of the general approach we discuss the teleparallel formulation of general relativity.
متن کاملThe Symmetries of Equivalent Lagrangian Systems and Constants of Motion
In this paper Mathematical structure of time-dependent Lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent Lagrangian systems are considered. Starting point is time-independent Lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to th...
متن کاملRecursive Construction of Generator for Lagrangian Gauge Symmetries
We obtain, for a subclass of structure functions characterizing a first class Hamiltonian system, recursive relations from which the general form of the local symmetry transformations can be constructed in terms of the independent gauge parameters. We apply this to a nontrivial Hamiltonian system involving two primary constraints, as well as two secondary constraints of the Nambu-Goto type. ema...
متن کاملSymmetries Shared by the Poincaré Group and the Poincaré Sphere
Henri Poincaré formulated the mathematics of Lorentz transformations, known as the Poincaré group. He also formulated the Poincaré sphere for polarization optics. It is shown that these two mathematical instruments can be derived from the two-by-two representations of the Lorentz group. Wigner’s little groups for internal space-time symmetries are studied in detail. While the particle mass is a...
متن کاملthe symmetries of equivalent lagrangian systems and constants of motion
in this paper mathematical structure of time-dependent lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent lagrangian systems are considered. starting point is time-independent lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2010
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.82.044012